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Reflexive spaces are characterized with the help of metric projections which
possess a continuity property similar to n-lower semi·continuity and admit con
tinuous e-approximate selections. An example showing that almost lower semi·
continuity of a metric projection is not sufficient for the existence of a continuous
selection is constructed. © 1989 Academic Press. Inc.

1 INTRODUCTION

Let (X, r) be a topological space, and (Y, d) a metric space. A mapping
F: X ~ 2 Y which associates with every x E X a non-empty subset F(x) of Y
is said to be lower semi-continuous (l.s.c.) (respectively, upper semi-con
tinuous (u.s.c.)) if, for each open set IllI in Y, the set {x E X: F(x) n IllI =f 0}
(respectively, the set {XEX: F(x)cllll}) is open in X. A mappingf: X~ Y
is a selection for F if, for each x E X,j(x) E F(x).

One of the most celebrated results on the existence of continuous selec
tions is the following theorem of Michael [11]: If X is a paracompact (e.g.,
metric) space and F: X ~ 2 Y is l.s.c. and has dosed convex images, then F
admits a continuous selection. The key step in the proof of this theorem is
the construction of continuous a-approximate selections. For an arbitrary
non-empty set A 5; Yand a>O, let Be(A) denote the union of open balls
with radii equal to a and centers running over A. A mapping f: X ~ Y is
called an a-approximate selection for F: X ~ 2 Y if for each x in X f(x) E

Be(F(x)).
In [7J Deutsch and Kenderov introduced two continuity properties for

multivalued mappings and identified topologically those mappings which
admit continuous a-approximate selections.
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DEFINITION (Deutsch and Kenderov). A multivalued mapping F:
X --+ 2 Y is said to be almost lower semi-continuous (a.l.s.c.) (resp. n-Iower
semi-continuous (n-l.s.c.)) at Xo E X if for each e > 0 there is a
neighbourhood Olf of X o such that n{B,(F(x))#0: xEOlf} (resp.
m~IB,(F(xJ)#0 for each choice of n points Xl' X2, ...,Xn in Olf). Fis
a.l.s.c. (resp. n-l.s.c.) if F is a.l.s.c. (resp. n-l.s.c.) at each point X of X.

For our purposes we give a slightly different

DEFINITION. A multivalued mapping F: X --+ 2 Y is said to be finite lower
semi-continuous (f.l.s.c.) at Xo iffor each e > 0 there is a neighbourhood Olf
of X o such that for each finite set of points A in Olf nXEA B,(F(x)) # 0. F is
f.l.s.c. if F is f.l.s.c. at each point X of X.

One of the main results in [7] is the following

THEOREM (Deutsch and Kenderov). Let X be a paracompact space and
let Y be a normed linear space. Suppose F: X --+ 2 Y has convex images. Then
F is a.l.s.c. if, and only if, for each e > 0 F admits a continuous e-approximate
selection.

The above theorem, as well as other topological results in [7], Deutsch
and Kenderov apply to metric projections. Recall that a map PM: X --+ 2M,
where M ~ X and X is normed, is referred to as the metric projection
generated by M provided that for each X E X

PM(x) = {YEM: Ily-xll =d(x, M)},

where

d(x, M) = inf{ Ilx - zll: z E M}

is the distance function generated by M. A set M is called proximinal if
PM( x) # 0 for all x in X. It is well known that the proximinal sets are
closed.

Various problems concerning existence or non-existence of continuous
selections for metric projections are studied in [1-3, 7, 10, 12-15, 18, 19]
and others. Closely related to [7] is the work of Beer [1]. We note that
the notion of approximate selection in [2, 4, 5, 16, 17] bears a different
meaning.

This paper is motivated by the work of Deutsch and Kenderov [7]. It
contains two results. The first one gives a characterization of reflexivity: A
Banach space X is reflexive if, and only if, for every equivalent norm in X
every f.1.s.c. metric projection generated by a proximinal subset of X has
continuous e-approximate selections for each e > O. The second result
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shows that almost lower semi-continuity of a metric projection does not
imply existence of a continuous selection, even for finite dimensions: In a
five-dimensional Minkowskian space there is an a.l.s.c. metric projection,
generated by a three-dimensional subspace, which fails to possess a con
tinuous selection.

2. THE MAIN RESULT

THEOREM 1. Let X be a non-reflexive Banach space and M s; X be a
closed subspace with codim(M) = 2. Then there is an equivalent renorming of
X such that M is proximinal and the metric projection PM: X ~ 2M is finite
lower semi-continuous but not almost lower semi-continuous.

Proof Since M is closed and codim(M) = 2, then M is non-reflexive
itself, and X is isomorphic to 1R2 x M. We will define an equivalent norm in
the space Z := 1R 2 x M. Suppose IE M* is a bounded linear functional with
IIIII = 1 which does not achieve its supremum on the closed unit ball
U(M). The existence of such a functional is ensured by the theorem of
James [9].

Consider the sets

c= {(r, s, 1/)E IR x IR x M: s= <f, 1/), r2
+S2 ~ 1, 111/IIM ~ 1}

D = {(O, t, 1/) E IR x IR x M: It I~ 1, 111/IIM ~ 1},

where <.,. >is the dual pairing between M and M*. Obviously, C and D
are closed convex bounded and symmetric. Designate by V the dosed con
vex hull of CuD, i.e., V = co(CuD). Then V is a closed convex bounded
and symmetric set. Also, it has non-empty interior: If C 1 is the set {(r, 0, 0):
Irl~1}, then 2- 1(C1 +D)= {(r/2, t/2,1//2): Irl~1, Itl~1, IlllI1M~1} has
non-empty interior. On the other hand the latter set is properly contained
in V.

Now V viewed as a unit ball defines an equivalent norm 11·11 in Z. Let
PM: Z -? 2M be the metric projection generated by M with respect to the
V-norm.

For arbitrary q E [0, 2n), let aq = (cos q, sin q, 0) EZ. OUf next goal is to
determine the set PM(aq ). Notice that the orthogonal projections of C and
Dover 1R2 are both contained in the circle {(r, s, 0) E 1R2 x M: ,2 + S2 ~ 1}.
Since it is closed, the orthogonal projection of V is in the same circle too.
Therefore

(1)

Denote by »Zq the affine set {(cos q, sin q, 1/) EZ: 1/ EM}, q E [0, 2n). It
follows from (1) that »Zq does not intersect the interior of V. If we show
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that V n m q i= 0, then the formula P M(aq ) = (a q + V) n M will take place.
Towards this end, suppose first that q i= nl2 and that q i= 3n12. In this
situation m q n D = 0. Moreover, both sets are separated by the functional
(cos q, sin q, 0) E Z*. So are m q and C. In order to prove that V n m q =
C n m q , we need the following

LEMMA 1. Let C, D, and H be closed convex subsets of a normed space
X, and let g E X* be a bounded linear functional such that

sup{ <g, y): YED} =a<f3=inf{ <g, z): zEH}, and

sup{ <g, x): XE C} ~f3.

Then Hnco(Cu D)=H n C.

Proof Obviously H n C ~ H n co(CuD). Let Z E H, Z = lim Zn, Zn =
Anx n +(I-A)Yn where (xn)~C, (Yn)~D, (A n)c[O,I]. Choose a con
vergent subsequence of (An)' With abuse of notation, let An ~ ..1,0' Then we
have

13 ~ <g, z) ~Ao lim<g, X n) + (1-..1,0) lim<g, Yn)

~ ..1,013 + (1- Ao)a ~ ..1,013 + (1- ..1,0)13 = 13·

This implies ..1,0 = 1, whence Z = lim X n. Therefore Z E C because C is closed.
The proof is completed.

By Lemma 1 Vnm q = Cnmq • So

V n m q = {(cos q, sin q, 0) E Z: <f, IJ)

= sin q, IIIJII M ~ l}, q i= n12, 3nl2 (2)

The explicit form of V n m q convinces us that V and m q have a nonempty
intersection.

For q = nl2 we obtain

Vnm n /2 2Dnm n/2 = {CO, 1, IJ)EZ: IIIJIIM ~ I}. (3)

Analogously, for q = 3nl2

V n m3n/2 2D n m3n/2 = {(O, -1, IJ) EZ: IIIJII ~ l}. (4)

It is a routine matter to verify that P M(aq ) = (a q + V) n M
aq + V n (-m q ), whence by (2)-(4) we have

P M(a q ) = {(O, 0, IJ) E IR x IR x M: <f, IJ)

= -sin q, IIIJII M ~ I}, q ¢ {nI2, 3n12} (5)
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(6)

(7)

In this way, for the points of the circumference E = {(cos q, sin q, 0) EZ:
qE [0, 2n)}, q¢. {nI2, 3nI2}, the images of PM correspond to the level-sets
of f intersected by the closed unit ball U(M), while for q = nl2 or q = 3n12,
U(M) is contained in P M(a q ).

We claim now that the restriction of PM over E is finite lower semi-con
tinuous. The claim is almost obvious; however, for the sake of com
pleteness, we give a demonstration in the particular case qo = nl2 (for
arbitrary q the proof is similar).

Fix e> 0 (e < n12) and take an open neighbourhood U/t in Z, aqO E
such that for arbitrary aq = (cos q, sin q, 0), aq EU/t, it follows that
Iq - nl21 < e. Let (aq)7~ 1 EU/t and k is an index satisfying Iqk - nl21 =
min {Iqi - n121: i = 1, 2, ..., n}. Suppose qk i= nl2 (the case qk = qo is trivial)
and take YEPM(aqJ Then </,y)=-sinqk' For each i choose Ai,
0< Ai < 1, such that <J, Ai y) = - sin q i, and define Yi = )'i y. Since Yi
belongs to PM(a q), we have the estimation

sin qi .
= 1 - -.-- < 1- sm q i < 1nl2 - q i I < e.

sm qk

Therefore n7~ 1 B e(P M( aqi)) i= 0, i.e., P MI E is f.l.s.c. at aqo' Our next lemma
implies that PM is everywhere f.l.s.c.

LEMMA 2. Let Z = (Y x M, II ·11) be a product space of two Banach
spaces Y and M, and let PM be the metric projection generated by M (i.e., by
{O} x M). If for E = {(Y, 0) E z: II yll y = 1} the restriction map P""IE is
a.i.s.c. (respectively fi.s.c.) and has non-empty images, then so is PM-

Proof For arbitrary Z EZ the representation Z = Ay + m holds, where
}, ~ 0, Y E Y, Ilyll y = 1, mE M. We claim that

PM(z)=m+),·PM(y). (8)

Designate the closed unit ball of Z by V and suppose dey, M) =
r>O. Then m+APM(y) = m+A(Mn(y+rV)) = m+Mn(),y+)"V) =
Mn(z+}]V). Now since for any kE(O,r) Mn(y+kV)=0, then
M n (z + J.k V) = 0. Therefore d(z, M) = )", which establishes the claim.
In particular, (8) implies P M (z)i=0.

640/56/1-5
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We next prove that PM is a.l.s.c. at Zo where Zo is an arbitrary point in Z
(the case of f.l.s.c. is treated analogously). If Zo =mo EM, then for each
zEBe/2(mo) and each mEPM(z)

limo -mil ~ limo -zil + liz-mil ~2 . limo -zil <e,

whence (){Be(PM(z)): Ilz-zoll<e/2}=l-0. So let Zo=AYo+mo, Ao>O,
II Yo II y = 1, mo EM. Since PMIE is a.l.s.c. at Yo, there exist b >°and Uo EZ
such that

UoEn {Be/3Ao(PM(Y)):YEE, IIY-Yoll<b}. (9)

Obviously, we can always assume that Iluo II > 0. Consider the open
neighbourhood of Zo

i.JIt= {Ay+m: IA-Aol <min{e/41Iuo ll, Ao/2},

yEE, Ily- Yoll < b, mEM, 11m-mo ll < e/4}.

Suppose ZE i.JIt, Z= AY + m, and take in (9) a point UE PM(Y) such that
Ilu-uoll <e/3Ao. According to (8) Au+mEPM(z). It follows from

IIAu+m-Aouo -moll ~A Ilu-uoll + IA-Aol·lluoll + 11m-mo ll

< eA/3Ao + e/2 < e

that Ao Uo + mo E () {B.( P M(z)): Z E i.JIt}, and this completes the proof.

In this way, for an arbitrary bounded linear functional IE M* not
achieving its norm, we defined an equivalent norm in Z with respect to
which M is proximinal and PM is f.l.s.c. Now I is chosen in a more
sophisticated manner so that PM fails to be a.l.s.c. In doing so we employ a
theorem of James. But, before that, we make some explanatory remarks.

Suppose (gn) c M* is a sequence of bounded linear functionals. Denote
by L(gn) the set

{wEM*: lim<gn, x) ~ <w, x) ~lim<gn'x), VXEM}

and observe that L(gn) is non-empty. Indeed, the mapping T: M ~ la:"
T(x) = (<g n' x) ), associates with each x EM a bounded sequence. If cp E l'to
is a Banach limit, then lim<gn, x) ~ cp(T(x)) ~ lim<gn, x) whence
w(·) = cp(T(· ))EM*.

For arbitrary I E M*, 1IIII = 1, denote

S(f, y) = {x E U(M): {f, x) = y}, 0< y < 1.

It follows from (5-7) and Lemma 2 that PMIE is a.l.s.c. at (0, -1,0) EZ if,
and only if,

Ve>03Yo E(0, 1): n Be(S(f,y))=l-0.
Y;;' YO

(10)
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Using the next theorem we show that in a non-reflexive Banach space there
exists a functional f which does not satisfy (10).

THEOREM (James [9], [8, p. 12J). Suppose M is a non-reflexive Banach
space. Then for () E (0, 1) and An > 0, 2:;;C~ I An = 1, there exist 0:, (J:( iJ( :( 2,
and (gn)cM*, Ilgnll:( 1, such that each wEL(gnY satisfies

and

II n~1 An(gn - W)II :( iJ(

ttl J·n(gn -W)II :(a-(1-()'n~~+1 An} kEN.

(11 )

(12 )

Pick eE (0, 1) and choose 6>° so that 6 < ()2/2. If Al = 1 - b,
J' n+ I = bAn' then An> 0, 2::~ I An = 1, and according to the theorem of
James there exist ex, ():(a:(2, and (gn)cM*, lignll:( 1, such that each w,
wEL(gn), satisfies (11) and (12).

For an arbitrary fixed functional w, WE L(gn), take f =
0: -1 2::= 1 An(gn - w) where Ilfll = 1. We claim that f does not satisfy (10).
Assume the contrary. Then for 0 < 8 < (ae - 2b)/2· b/(l- 6y there are
x, E U(M) and Yo E(O, 1) such that x, EB,(S(f, y) whenever YE(Yo, 1).
Since lim<gn, x e ):( <w, x e ), there is k so that

<gk -w,x,) < (i.e-2b.

Estimate <f, x) for XE U(M), Ilx-x,11 :(8,

a<f, X) = ( :~~ )'n( gn - w), X) + Ak<gk - W, X - Xe )

+ Ak<gk - W, x e ) + / f )'n(gn - w), x)
\n~k+l

:( II :~: An(gn - W)II + 2eAk

00

+ (a()-26)Ak +2· I }en
n~k+l

00

+ (a()-26)Ak +26· I An
n~k

00

=a-(a()-26)· I An + 2eAk·
n=k+l
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Hence

where
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<.f, x ) ~ 1- c, (13 )

Since e is sufficiently small, then

-1 [ ~ 15A.k ]c> a (aB - 215)· L. A.n --- = o.
n=k+l 1-15

It follows from (13) that BAx e) n S(j, y) = 0 whenever y > 1 - c and this
contradicts the choice of x e' Therefore f does not satisfy (10). Therefore PM
is not a.l.s.c. at (0, -1,0) E Z. The proof of Theorem 1 is completed.

With the help of Theorem 1 and the theorem of Deutsch and Kenderov
we give the following criterion for reflexivity:

THEOREM 2. A Banach space X is reflexive if, and only if, for every
equivalent renorming of X every finite lower semi-continuous metric projec
tion generated by a convex proximinal subset of X admits a continuous
e-approximate selection for each e > O.

Proof Necessity. Let (X, 11·11) be reflexive. Suppose 1·1 is an equivalent
norm and M is a convex subset of X which is proximinal with respect to
1·1. Suppose also that the metric projection PM: X ---+ 2M is f.l.s.c. The
Banach space (X, 1·1) is reflexive and M is closed. We recall that in a
reflexive space a convex set is proximinal if, and only if, it is closed. For
arbitrary x E (X, I·') and e> 0 there exists a neighbourhood i5II of x such
that n7~ 1 Be/2(PM(X,.) i= 0 for each n and each choice of n points XI'

X2' ..., x n • Now the family {Be/2(PM(Z)): zEi5II}, whose elements are weakly
compact sets, has the finite intersection property and then it has a non
empty intersection. Therefore PM is a.l.s.c. and according to the theorem of
Deutsch and Kenderov PM admits a continuous s-approximate selection
for each s > O.

Sufficiency. Suppose X is non-reflexive. It follows from Theorem 1 that
there exist an equivalent norm 1·1 and a convex proximinal set Me X such
that the metric projection PM: X ---+ 2M is f.l.s.c. with respect to 1·1, but it
lacks a.l.s.c. Apply the theoerem of Deutsch and Kenderov again, the suf
ficiency part, to prove that for some s > 0 PM fails to admit a continuous
s-approximate selection.
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3. EXAMPLE OF AN A.L.S.C. METRIC PROJECTION, GENERATED BY

A THREE-DIMENSIONAL SUBSPACE OF A FIVE-DIMENSIONAL SPACE,

WHICH DOES NOT HAVE A CONTINUOUS SELECTION
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In the sequel sn and Bnwill stand for the unit sphere and the closed unit
ball of the n-dimensional Euclidean space W, respectively. The Euclidean
norm is denoted by 1·1.

The following simple example of an a.l.s.c. U.S.c. mapping ¢;: [R -+ 2~ x ~

which fails to admit a continuous selection has motivated our further con
siderations. The example is a modification of an analogous example due to
Ch. Dangalchev [6]. Earlier examples of the same nature, but without
upper semi-continuity involved, have been constructed by Pelant, c.f.
and Beer [1].

Suppose (en);:o= 1 is a strictly decreasing sequence of positive reals so that
limn~oo en =0. Define another sequence (wn);:O~1 by W n =2-- 1(en +8n+d.
The points Pn and Qn have coordinates (wn, 1) and (en, -1), respectively.
Denote by Lin the triangle [Qn' Pn, Qn+ 1] for n = 1, 2, .... The mapping ¢; is
defined as follows: For x ~°(x ~ wd,

\

Lin

¢;(x) = [Qn, (x, 1)]

[(0, -1), (0,1)]

if x = W n

if Wn <x<Wn _ 1
if x = 0,

and for x < °rjJ(x) = -rjJ( -x).
It is easily checked that rjJ is a.l.s.c. Suppose f: [R -+ [R2 is a selection for ¢;

which is continuous at both W n and -Wn. Then f(w n) = Pn and
f(-wn)=-Pn- On the other hand limn~ooPn#(O,O) andfcannot be
continuous at 0.

We consider next a multivalued mapping q;, in a certain sense similar to
rjJ, which admits a mechanical interpretation: The images of q; might be
viewed as sets of contact when a cylinder-like solid is rolling over a plane.

Denote D 1 = {(cos <p, sin <p, 1) E [R3: <p E [0, 2n)} and D 2 = {(cos cp,
sin <p, -1) E [R3: <p E [0, 2n)}. Let 'Y 1 and (2 be the planes carried by D 1 and
D2 , respectively. Suppose (en) and (wn) are two strictly decreasing
sequences both defined for every integer n E 7L and satisfying 2wn =
8n +en+1. Moreover, suppose 80 =n/2, 8_ n=n-en, limn~~oo8n=n,

limn~+ooen=O. Then w_n=n-wn, limn~_oown=n, limn~+CDwn=O.

Put Pn = (cos W n, sin W n, 1) and Qn = (cos en, sin en, -1). We now define
a three-dimensional convex body W by description of its surrounding
surface S (see Fig. 1).

The segments [(1,0, -1), (1,0,1)] and [(-1,0, -1), (-1,0, 1)] are
part of S. So are the triangles Li n = [Qn' Pn' Qn+1]. Let en be the cones,
with vertices Qn, generated by D l' The conical sectors Kn which also
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FIG. 1. The conical sectors are marked by dashed lines.

belong to E are cut off from Cn by YI' Y2 and the planes through An _ 1 and
An" Observe that for each n the plane supported by An meets YI at a line In
which is a tangent to D 1 at P n • Hence the planes through two adjoint
triangles An _ 1 and An are tangent to the surface of Cn' the segments
[Pn-l> QnJ and [Qn, PnJ being generatrices for Cn" To complete the
definition of E note that X E E implies - X E E. Finally, define W = co E.

Thus We have a closed convex bounded and symmetric set with non
empty interior. Let 11·11 be the norm generated by W via the Minkowski
functional. Denote by M the Minkowskian space (~3, 11·11).

For each point xES3, with coordinates (XI,X2'X3), Ix3 1#1, define

n(x)=(xdJxi+x~, x2/Jxi+x~, 0), i.e., n projects x along the
"meridian" on the "equator" E = {(x I' x 2, X3) E ~3: 2X1 + 2X2 = I}.

It is clear from the definition of W that for every Y = (YI' Yz, Y3) E bdW
with 1131 # 1 there exists a uniquely determined normal vector v(y) E S3.

Consider the set

which is symmetric since W is symmetric itself. There is no difficulty in
verifying that E is a homeomorphic image of r via n. Then r might be
viewed as a parametric curve with a parameter qJ, where qJ is the oriented
angle between the axis OX 1 and n(v(y)).

Denote by h w( .) the support function generated by W, i.e., h w(x) =
max{ <x, z): ZE W}. For each XEr let

Ex = {YE W: <x, y) = hw(x)}.
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Define ~ as a composed map E-+ ,,-1 r-+ -F W, where -F(x) = -(FJ
whenever x E r. The images of ~ are the "contact sets" of Wand a plane
"rolling" around W. Evidently, ~ is a.l.s.c. The absence of a continuous
selection for ~ is shown in the same way as this was done for the mapping
eP.

At the final stage of our construction we introduce a new norm in
[R2 x M such that the metric projection PM: [R2 x M -+ 2M restricted on the
circumference C = {(~, 0) E [R2 X M: I~ I= 1} is identical with ~.

For arbitrary x E r let

and define the new unit ball V by the formula

V = co (U Gx u! BS
).

XEr

Obviously, V is a closed bounded set with non-empty interior. It will suffice
for symmetry to show that Ux ErG x is symmetric. Indeed, if (~, 11 ) E

UXEr Gx' there is x E r such that ~ = n(x) and 11 E F x . Since W is symmetric,
then ~11EF_x' On the other hand -~=n(-x) since r is symmetric.
Hence (-~, -11) E G-x and - x E r. Thus V defines a norm in [R2 x M
which we also denote by 11·11.

Identifying in notation {O} x M with M, let PM be the metric projection
generated by the three-dimensional subspace M. We claim that

(14 )

whenever ~ E [R 2, I~ I= 1 and x = n - 1(~). The orthogonal projection along
M maps Von B2. For an arbitrary ~ ES2, denote 'in~ = {(~, 11): 11 EM}. It is
clear that d((O, 0), 'in~) ~ 1. Suppose ~ is a fixed point on S2 and ~ = n(x).
We prove next

Gx='in~nV (15)

The inclusion Gx ~ 'in~ n V follows immediately. Conversely, if (~, '1) E

'in~nV, then 1~1=1 and (~,11)=limn~oA~n,11n) where (~n,11n)E

CO(UxEr Gx u! B S
). According to the theorem of Caratheodory (~n, 11n) =

I:~~ 1 Ani(~ni' 11ni) where 0,:;; Ani':;; 1, I:~~ 1 Ani = 1, (~ni' 11nJ E UXEr Gxu! B
S

,

n = 1, 2, ..., i = 1, ..., 6. We may assume, by passing to subsequences, that for
every i limn ~ CD Ani = Aoi and limn ~ CD(~ni' 11ni) = (~oi' '1oJ So, with abuse of
notation, we write

k k

(~,11)= L Aoi(~oi,11oJ, Aoi>O, L Aoi =l, k,:;;6.
i=l i=l
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Since ~ = L7= 1 AOi~oi and I~Oi I ::;; 1, we have from the strict convexity of B2

that ~oi = ~ for i= 1,2, ..., k. Suppose i is a fixed index. If (~ni' 11nJ were in
! B 5 for infinitely many values for n, then ~oi would belong to ! B 5 too. But
this is incompatible with our choice of ~. So for large n (~ni' 11nJ E UXEr Gx.
Therefore there exist uniquely determined points Xni E S3 such that ~ni =
n(xnJ, 11ni E FXni whence

(16)

Since n is a homeomorphism, then limn--+coxni=limn--+con-l(~nJ=

n -l(~) Er. Taking x = n -l(~) and letting n go to infinity in (16), we obtain
<x, 1J oi>= h w(x). Notice that 11 oi E W since W is a closed set. On the other
hand XEr and then 110iEFx, ~=n(x). So (~,11oJEGx' It follows from the
convexity of Gx that (~, 11)= (~, Ltl Aoi11oJEGx' Thus (15) is established.
In particular, (15) entails d((O, 0), m~) = 1.

We proceed in determining the image of PM at (~, 0) for ~ES2. As was
shown above d((~,O),M)=1. Suppose (z,Y)E[(~,O)+V]nM. Then
z=O and (z,y)=(~,O)+(-~,Y) whence (-~,Y)EV. So (~, -Y)E
m~ n V = Gx whenever x = n-l(~). We have - Y EFx which implies Y EF-x'
Thus P M(~' 0) £; (0, F -x) for ~ = n(x). Conversely, suppose (0, y) E (0, F -x)
where ~ = n(x). It follows from the representation (0, y) = (~, 0) + (-~, y)
that (-~, y) E G-x £; V because - ~ E n( - x). On the other hand obviously
(0, y) E M. The proof of our claim (14) is completed.

Finally, notice that since the restriction of PM on the circumference C
behaves like the mapping q;, we need only apply Lemma 2 in order to make
sure that PM satisfies the required properties.
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